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ERROR ESTIMATE IN AN ISOPARAMETRIC FINITE 
ELEMENT EIGENVALUE PROBLEM 

M. P. LEBAUD 

ABSTRACT. The aim of this paper is to obtain an eigenvalue approximation for 
elliptic operators defined on a domain Q with the help of isoparametric finite 
elements of degree k . We prove that A - Ah = O(h2k) provided the boundary 
of Q is well approximated, which is the same estimate as the one obtained in 
the case of conforming finite elements. 

1. INTRODUCTION 

We consider a spectral approximation by the isoparametric finite element 
method for an elliptic operator L defined over a bounded domain Q of R2. 
The goal is to approximate a simple real eigenvalue A of L. 

J. E. Osborn [10] developed a general spectral approximation theory for com- 
pact operators on a Banach space. He proved that the conforming finite element 
method of degree k made up over a polygonal domain Q satisfies the following 
result: 

(1.1) I| U-Uh IIL2(Q) = O(hk+,) and I A - Ah I = O(h2k), 

where ( i, u) is an eigenpair of an elliptic operator. U. Banerjee and J. E. Os- 
born [4] took into account the effect of numerical integration and showed that it 
depends on the degree of precision of the quadrature rules and on the smooth- 
ness of the eigenfunctions. To be more precise, they found the same rate of 
convergence as indicated before if the quadrature rules are of degree 2k - 1 
and u is regular enough. U. Banerjee [3] improved in some way this result: for 
quadrature rules of degree 2k - 2, the estimate for the eigenfunction remains 
true but not for the eigenvalue, where one degree is lost. 

For selfadjoint problems, estimate (1.1) has been obtained by several authors; 
in particular, [5] proved it for Sturm-Liouville problems approximated with 
piecewise cubic polynomials. It is a one-dimensional paper but it presents a 
result estimating eigenvalue error in terms of approximability error, which is 
used for selfadjoint problems in higher dimensions. 

If we apply the general results of Osborn [10] to the usual isoparametric 
finite element approximation over some bounded domains (see ?4), we obtain 
the same rate of convergence as in (1.1) for the eigenfunction u but for the 
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eigenvalue we only have I - I = O(hk+l) because aQ and 0Qh differ by 
at most O(hk+1) (Lemma 3.1). Our purpose in this article is to give a "good" 
construction of the approximate boundary that will lead to the phenomenon of 
supraconvergence: I A - Ih I = O(h2k). To be more accurate, this estimate can 
be derived from Theorem 3 in [10] together with (4.4) and the inequality 

* ((T- Th)u) < Ch2k, 

where e* is a linear form defined in (2.5). This last estimate involves a careful 
analysis of the underlying isoparametric approximation and is proved under 
Hypothesis (H) given in ?4. 

In ?2, we briefly describe the exact problem and the approximate one. In ?3, 
we show how we build up the mesh over the bounded domain Q of interest and 
how we devise the external layer of the elements to obtain a good approximation 
of the boundary aOQ. The main result is given in ?4, where we also recall some 
previous results we need next. This result is proved in two steps: first we write 
A - Ah as an integral defined over aQ (?5); then the estimate of this integral 
(?6) leads to the result. In the last section, some examples of triangulations 
satisfying the requirements of the theorem are given in the cases k = 2 and 
k = 3. 

2. SETTING FOR PROBLEM 

Let Q be a bounded domain of JR2 with a C?? -boundary an. We define 
an operator L on C2 (Q) by 

(2.1) Lu=- E OUxj ( 'x) 
i,j=1 

where aij belong to COO(R2, R). We assume that L is uniformly strongly 
elliptic, i.e., there is a constant ao > 0 such that 

2 2 

(2.2) VE 1R2, VX E R2 E aij(x) Xij )i aoZ. 
i,j=l i=1 

We associate with L the following bilinear form defined on H1 (Q) x H1 (Q): 

(2.3) an(u,v)= 2 a OjUj(x) a , dx. 
Z, ja I I(x)0ax 

It is coercive on Ho' (Q) x Ho (Q); furthermore, the boundedness of aij on 
Q implies that a . is continuous on HI (Q). According to the Lax-Milgram 
theorem, the problem 

(for f E L2(Q), find u E Ho'() such that 

{a (u, ) = f (x) >p (x) dx for all V E Ho (Q) 

has one and only one solution u = Tf . The operator T is an operator ac- 
cording to the Rellich theorem. We denote by , a nonzero, real and simple 
eigenvalue of T and by u an associated eigenfunction, normalized with re- 
spect to the L2(Q) norm. We may then choose an eigenfunction u* of T* 



ISOPARAMETRIC FINITE ELEMENT EIGENVALUE PROBLEM 21 

^2(0, 1) 

A 
K 

atO(0, ?) \al(l, ?) 

FIGURE 2.1 

associated with ,u, where T* is the adjoint of T with respect to the L2 (Q) 
inner product, in such a way that 

(2.4) ju*udx= 1. 

We consider the following problem: 

(PI) {u 
-ATu =0, 

( 1) l f*(U) = I 

where A = 1//u and e* is the linear form defined on L,2(R2) by 

(2.5) P*(v) fJu*vdx. 

We assume the space Wm P(Q) normed with 

where 11 IlP is the usual norm of LP(Q). We use also the seminorm 

apaQ ( E I10aUllp) IUIM,P,n = z IauI) 
Ial=m 

and make the usual changes if p = oo. 
We consider the approximation of (P1) by the isoparametric finite element 

method of Lagrangian type and start by reviewing the construction of a triangu- 
lation associated with this method ([6, 7, 8]). Let k be a nonnegative integer 
and (K, P, X) the finite element of reference defined as follows: 

-K = {fx = (,S2); X^l ) 0; x2 ) 0; X+xl 2 ( 1} is a triangle whose 
vertices are denoted by ao, a', a2 (see Figure 2.1). 

- P = Pk, where Pk is the space of all polynomials of degree not exceeding 
k defined on R. 

-E = {^ = (X, X2); X1 = ilk; X2=j/k; i +j < k; i, j E N}, the set 
of all Lagrangian interpolation nodes. 

We consider an open set Qh approximating Q and a triangulation 5h of 
curved finite elements: an element K of 5h is given by K = FK(K), where 
FK is an invertible mapping each component of which belongs to Pk. The 
map FK is indeed determined by the data of the images ai K of the nodes ai 
belonging to S. We assume that, if an edge F of K is on 0Qh, its vertices 
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are on OQ too and that the edges which do not belong to 0Qh are straight. 
These hypotheses are illustrated by Figure 2.2. 

We denote by hK the diameter of K and assume that all hK are bounded 
by h. 

We define the space of functions Vh by 

(2.6) Vh = {v E CO(R2); V(X) = O if x f Qh; VIK E PK VK E h}, 

where PK = {p: K-4 R; P o FK E Pk} . It is easy to check that 

(2.7) Vh C Ho (Qh) 

We also assume that this triangulation is k-regular (Ciarlet and Raviart [7]). 
We now approximate our problem. We first define an elliptic bilinear form on 
Vh x Vh by 

(2.8) ah(vh,wh)= 2 OVh OWh dx. (2.8) ah (Vh ,Wh) =E IQ -j -x 
- 

i,j=l1 
11 

OXi1x 

We also define two operators Th and Th* from L2(R2) to Vh by 

V ah(Thf , Vh) = fVh dx, 
V f E L2 (R2), ~VVh E Vh 22 

ah(Vh, T*f) = jfvhdx, 

and Uh and Ah are solutions of 

(P2) Uh-AhThUh0. 

We furthermore assume that Uh is the orthogonal projection of u on the 
eigenspace of Th associated with Ph = 1/Ah . We then derive an estimate 
for A - Ah i 

Remark. Most of the time, Q and Qh are different. We sometimes need to 
extend functions defined on Q or Qh to R2 in a continuous way and use the 
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same notation for a function and its extension. Unless explicitly mentioned, an 
Hol (Q)-function is extended by zero outside of Q. 

3. CURVED TRIANGLES 

We shall obtain the stated estimate, A - Ah = 0(h2k), by means of "good ap- 
proximation" of the boundary aQ. This needs explanation, which we provide 
in this section. 

We assume that OQ is parametrized by its arclength a -> x(a) and denote 
by n (a) the unitary normal vector, exterior to OQ at the point x(a) and by 
L the length of 0Q. 

Consider the mapping defined as follows: 

(3.1) X: (C, 4) > X(a, 4) =x(a)+ n(a) 

If a > 0 is small enough, X is a C??-diffeomorphism from [ 0, L ] x [ -a, a] 
onto a neighborhood ' of OQ in 1R2. From now on, we assume that h is 
small enough so that 

(3.2) 0Qh C Y. 

Remark. If M = x(a) + g n1(a) E X, then x(a) is the orthogonal projection 
of M on OQ and jj = d (M, nQ), where d (M, OQ) is the distance of M 
to on. 

Now let us consider K a triangle of h , with a curved edge Fh in 0Qh and 
let ao = x(ai) and a, = x(ai+i) be the vertices of Fh . We call F the part of 
aQ lying between those two points, and we denote by 1i = ai+I - ai its length. 
We remark that 

(3.3) i = 0(h). 

We assume that ao = FK(aio) and al = FK(a&), where FK is the mapping of 
(pk)2 that defines K; thus, rh is the image of the segment [ao , a' ] under 
FK, and letting 

(3.4) xh(a) =FK (7I ?) 

we obtain a parametrized equation of Fh . Furthermore, xh is a polynomial of 
degree k with respect of a on [ vi- I, ai]. 

We assumed that for every i 

(3.5) Xh(ai) = X(ai) 

We furthermore assume that there is a constant C > 0 such that, for all i, 
we have 

(3.6) xh (ai+ ) - x (ai + i <C 1 forj=1, ..., k- 1. 

Lemma 3.1. Assume that (3.2), (3.5), and (3.6) hold. Then there is a constant 
C > 0 such that, for all i, we have 

IIXh-Xllm,oo,[a1,a,+,] < Chk+lm form = ,... , k+ 1. 
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Proof. Let a -> ghx(a) be the Lagrangian interpolation polynomial at the 
points ai + j li/k for j = 0, ... , k of the function a -* x(a). Thus, we have 

(3.7) 
{ghX(Ui + j1/lk) = x(a1 +ji11/k) for]j = 0, . k, 

gh X E (Pk) 2. 

It is well known that 

(3.8) 11ghx - xm,oo,[a,,,a,,+, Chk+1 m form=O,...,k+1, 

with C independent of i and of h. We define the Lagrange polynomial basis 
as follows: 

Oj (a)J= ( ai( -P lilk forj= i, ... , k- i. 

Then we can write 
k-I 

ghX(a) - Xh(a) = E (x (ai + m 1i/k) - Xh(ai + m 1i/k)) ?m(a). 
m=1 

The result is thus a consequence of (3.7) and (3.8) and of the well-known esti- 
mate 

dam 
C 

|damej(af) | I for m =0,...,k + 1 

Remark. We deduce, from this lemma, that the function Xh and all its deriva- 
tives are bounded on [ 0, L ] independently of h. 

According to (3.2), we observed that for a E [0, L] there is a unique 
E E (-a, a) such that x(a) + 7 n(a) E 0Qh . Let dh(a) be this value of 4; 

and we obtain a new parametrized equation of OQh: 

(3.9) a -> xh(a) = x(a) + dh(a) n (a) 

Lemma 3.1 then implies 

Corollary 3.1. The mapping dh is C?? on [ ai, ai+ ] for every i, and we have 

dh(a) O(h k+). 

Proof. Since dh(a) = (nh(a) - x(a), n (a)), the regularity of Xh gives the 

regularity of dh. E 

Put R, = {(x, y) E R ; y > 1/2}. There is a constant ho such that, for 

h < ho, we have R, c K n Q. From now on, we assume that h < ho0. 
2 

Lemma 3.2. There is a constant Cl > 0 such that, for all h < ho and for all 
V E Pk, we have, for i = 0, : 

Iv l oo % C lV i, 2,KnQ' 

Proof. Pk is a space of finite dimension; thus, by the equivalence of norms, we 
obtain 

liV Ioo K < C1 li 2R1k 
2 

We conclude by using RK ic K nl Q. o 
2f 
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Lemma 3.3. There is a constant C > 0 such that, for all h > 0 small enough 
and for all v E Vh, we have 

|| V 1l ,2,Ae <- C V 11 V|1, 2, nnn, 

where Ae = Qh \(-Qn lQh) 

Proof. Let K n Ae = F1 (K n Ae) and JK (x) be the Jacobian of the mapping 

FK at the point xi of K. According to the k-regularity of the triangulation 
([7]), there is a nonnegative constant Co such that 

(3.10) 0 < (< Co for all x, y E K. 

We deduce 

(3.11) area(KlAe)S <area(K flAe) k are(K Ae <, 
area(K) 

Ch 

since 

{ area(K n Ae) < C hk+2, 

area(K) ) C h2, 

area(K) = 1/2. 

We then consider a function v of PK; let v^ = v oFK so that v^ E Pk thanks 
to the definition of PK. Thus, we can write the following inequalities: 

I v I0,2,KnLAe < (maKxJK(xi)) IfO,2,KfL 

<, (mEa?cJK(X'))2 (surface(K nAe)) ov, o,k 

< C hk (ma?c JK(Xii))2 I1 Io,oo,k, according to (3.11) 
SkEK 

< C hk (ma?x JK(X)) 2Ii' 1IO 2 KJnn, according to Lemma 3.2 

<, C h2 (. I ())|v 10, 2, Kn 

The inequality (3.10) then implies 

(3.12) I v I0, 2, KnAe <, C1 hk I v 1l, 2, Knn* 

The k-regularity of the triangulation implies also that there is a constant C 
such that, for all K E Xh, we have 

f 11 DFK llo,oo0k S Ch, 
(3.13) 4 

~~~~11 DF- 
11 <C 
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Furthermore, 

|V 1, 2, Kn,6, -< (max~JK(x'))2 DFIK ll,oo00 K 11 , 2, K'nL 

< C hk (max JK(XG))2 IIDF1 ID koKI|VI1,(,K according to (3.1 1) 

min Ek JK(x ) 11 DF 112 

according to Lemma 3.2. The inequalities (3.13) then give 

(3. 14) |V | 1 , 2 , KnL6, < C2 h 
k 

I V |11, 2 , KnQ. 

Adding up the inequalities (3.12) and (3.14) over all the triangles that are in- 
volved, we obtain Lemma 3.3. El 

Remark. The inequality (3.14) is optimal, but (3.12) could be improved. 

4. THE MAIN RESULT 

We use the notations defined in ?3. Recall that we assume 

(1) For all i 
(H1) X(Ui) = Xh(Ui)a 

(2) There is a constant C > O such that for all j E { 1, ...,k- 1} and 
for all i 

(Hf2) | Xh (i+I k)-X(ai+I) C lik+1. 

We denote by 00 = 0, ... , k = 1 the k + 1 Gauss-Lobatto points of the 
interval [ 0, 1] and define 

(4.1) aw,j=ai+Qjlj, forj=O,...,k. 

Theorem. If (H1) and (H2 ) hold, and if the triangulation Xh is k-regular, 
then there is a constant M independent of h such that 

A i-Ah | M (h 2k + max I| X(ai,j)- Xh (i, j)|) 
1,]j 

Remark. If we assume that 

(H) max x(ai, j) - xh (ai, j) I - O(h2k), 

we obtain the supraconvergence phenomenon 

Ai-h = O(h2k). 

In order to prove the theorem, we establish the two following propositions. 

Proposition 1. There is a constant Ci such that 

A -Ah- g(a)dh(a)da <Clh2k, 

where g is a regular function of a. 

We then estimate the integral with 
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Proposition 2. Let vp E Wk-l , I (an); then there is a constant C2 > 0 such that 

j(o(a)dh(a)da < C2h2k (I (p Ik-1,1,an +L 1' 9 Ilk-2,o,)an 

+ C2 L || vO Ilk-2,o, an ma:x I (x -Xh) (i, i) I 
I,] 

Remark. The first proposition is valid in any dimension of space, but this is not 
the case for the second one, where the dimension two plays an important role. 

These propositions clearly imply the theorem. We shall prove them in the 
two following sections. For later purposes, we first recall some results. 

If the triangulation is k-regular, we have 

(4.2) For all u E Hk+l(]R2), 
|| (T- Th)u Ilm, 2, nh < Chk+l-m II Tu IIk+l, 2, form = 0, 1. 

One can find a proof of this statement in the articles by Zlamal [12, 13] in 
the case of Dirichlet-type problems. It has been improved by Zenisek [1 1] for 
various types of nonhomogeneous boundary value problems. 

We remark that the definitions of T and Th imply that 

11 (T - Th)U II0,2,R2 < 11 (T - Th)U 110,2, nnh + 11 (T - Th)U IIO,2,R2\(nnnh) 

(4.3) ( II(T- Th)u IIo,2,QnQh + 11 Thu IIo,2,Qh\(QnQh) 
+ II Tu II0,2, \(nnQn) I 

since Thu = 0 on R2 \ Qh and Tu = 0 on R2 \ Q. Then, by the Poincare 
inequality, 

for u E Hk+l (R2), such that Tu E Ho' (Q), we have 

II Tu IIO, 2, Q\(Qnnh) < C hk+l 11 VTu IIO,2,n\(nnlh) according to Lemma 3.1 

<, C hk+1 11 VTu 111,2,n ; 

for u E Hk+l (R2), such that Thu E Ho' (Q), we have 

Thu IIo, 2, Qh\(Qnnh) < C hk1 I| VThU IIo,2,Qh\(QnQh) 

< C hk+1 |1 ThU || 1, 2, Q\(Qnnh) 

< Ch2 II Thu I 1,2, nnh according to Lemma 3.3 

< C hk+ according to (4.2). 

The previous inequalities and (4.3) lead to 

(4.4) || (T - Th)u IIo, 2,2 = O(hk+l). 

We then use two results from the general theory of the spectral approximation 
for compact operators by Osborn [10]. 

Let T be a compact operator of L2(Q) into Ho (Q). We define a compact 
operator T from L2(]R2) into L2(]R2) as follows: 

Let u E L2(R 2); then 

Tu= T(u/Q) on Q, 

Tu = O on R 2 \Q 
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The operator Th is from L2(R 2) into Vh, thus into L2(I1R2). We denote by 
E (respectively Eh ) the projection of L2(]1R2) onto the space of generalized 
eigenvectors of T (respectively Th ) corresponding to iu (respectively Ph = 

l/'h ). These spaces are spanned respectively by u and Uh defined by (P1) 
and (P2) . We notice that Uh = Ehu. We let R(E) be the range of the mapping 
E. Given two closed subspaces M and N of L2(1R2), we set 

5(M, N) = sup{{inf{II f- g o1,2,aR2 ; g E N}}f E M; I fI1o,2,R2 = 1 }, 
5(M, N) = max (3(M, N), 3(N, M)). 

Osborn proves in [10] that 
There are two constants C1 > 0 and C2 > 0 such that 

(45) { 3(R(E), R(Eh)) < C1jj (T - Th)/R(E) II' 
I 1- 9h I <, C2 1(T- Th)IR(E) 1 

Moreover, 

II(T- Th)/R(E) 11 = sup{I ((T- Th)f, ?9) I; f E R(E), 9 E L2(]R2) 

11 fIIo,2, R2 = 11 9 110,2,12 = 1} 
< sup{ 11 (T-Th)f IIo, 2R2 ; 1 f IIo, 2, l} 

< C hk+l according to (4.4). 
We then have the following results, for u E R(E) with 11 u IIo,2,Q = 1 and 
Uh = EhUh 

(4.6) | u- Uh IIO, 2,2 = O(hk+l), 

(4.7) A I-Ah I = O(hk+l). 
We now turn to the proof of the two propositions stated above. 

5. PROOF OF PROPOSITION 1 

We first give some notations. We decompose Q U Qh into three domains: 

A| i=Q\9, 
(5.1) Ae= Qh \ e, 

ri = aQ n 2i , 
Fe = aQOnfae. 

We let n= v = (vl, v2) be the unit normal vector, exterior to &92, and set 

9 a=2 a 
| 0,L = E viaijuy 

(5.2) 9 2 9 
vL*= Z = E Vj aij 

i9,L jj=1 
x 

2 

A(a) = E aij (x (a))vivj. 
i,j=l 
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5.1. Proof of Proposition 1. We divide the proof of Proposition 1 into two 
lemmas. 

Lemma 5.1. We have the following estimates: 
(1) A- h = -2e*((T Th)u) +O(h2k+2) 

e* ((T - Th)u) = aAi (Tu, T*u*) + aL (Thu, Th* u*) 

+ a. ((T - Th)u, (T* - Th* )u*) 

+ j A(a.) [ a,(Tu)Th*u* + 9v(T*u*)Thu] du. 

Remark. The first estimate is a consequence of Theorem 3 in [10] together 
with (4.4). 

We introduce 
(5.3) g((a) = A(a) a,u &9 u* (x(o.)). 
Lemma 5.2. We have the following equalities: 

(1) aA. (u, u*) = g(a)dh(a.)da +O(h 2k+2), 

(2) az (ThU, TU*) = 2 jg(o)dh (a)da+O(h2k), 

(3) ' A(a)a,(u*)Thu d =- j g(a)dh(a))da + O(h 2k+), 

(4) I A(a) a (u) T u* da =-1.j g(a)dh(o.) dor + O(h 2k+) 

Suppose for the moment that these lemmas hold. We show that they imply 
Proposition 1. According to the first lemma, we have: 

A-h - Ah a., (Tu, T*u*) _A aL~ (ThU, Th*) 

- )2 a.((T- Th)u, (T* - T)U*) 

- ,2 J A(a) [a,(Tu)T*u* + a, (T*u*)Thu] do. 

Using A Tu = u, A T*u* = u* and the bilinearity of a, we get 

Ah 
- = - a. (u, u*) a-2a (Thu, Th,u*) -i33a,((T- Th)u, (T* - Th*)u*) 

A A e(a) [a,(u)Th*u* + a,(u*)Thu] do. 

We then use Lemma 5.2 and obtain 

A -Ah= j g((a)dh (a) do. - g (a)dh (a) do. + O(h2k) 

-A2a.((T- Th)u, (T* - T*)u*) +2 jg(a)dh(o.)du 

= j g(o.)dh(a) da + O(h2k) _ A2 a.((T- Th)u, (T* -T*)u*) 

= j g((o)dh(t.) do. + O(h2k). 
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To obtain the last equality, we have used the continuity of a e and the following 
inequality: 

I (T - Th)u 111 ,2,8 + 11 (T* - Th*)u* 1ii ,2,E < Chk, 

which is Proposition 1. Now we prove the two lemmas stated above. 

5.2. Proof of Lemma 5.1. To show the truth of (1) in Lemma 5.1, we remark 
that, for all w E Im(I - AT), we have 

(5.4) f*(W) = 0. 

This gives us 
0 = f*(Uh - AhThUh) 

= t*(Uh-ATUh) + 'h e ((T - Th)Uh) + (A- h) *(TUh) 

= Ah e ((T - Th)Uh) + (A -A) e*(TUh) according to (5.4). 
Thus, 

(5.5) (A- Ah)e*(TUh) =-Ah h ((T- Th)Uh). 

Furthermore, 
i*(Tu) = ?*(Tu) - ?* (T(u -Uh)) 

(5.6) = + O(hk+l) according to (4.4), 

e* ((T - Th)Uh) = e* ((T - Th)u) - * ((T - Th)(U - Uh)). 

We recall that the last term satisfies 

e* ((T-Th)(U-Uh)) = (T*-Th*) u* (u-Uh) dx 

= O(h2k+2) according to (4.4) and (4.6). 
Equalities (5.5) and (5.6) imply 

A-Ah = -LAhe* ((T- Th)u) + O(h2k+2 + I| -Ah I hk+ ), 

and we obtain the desired result thanks to (4.4) and (4.7). 0 

The second relation in Lemma 5.1 is a decomposition of the integral 
t* ((T - Th)u) over the domains defined in (5.1). From Green's formula, 

a,(v, w) - vL*w dx = fO,VL*wVda, 
(5.7) 

a,(w, v) - j Lv w dx = j OVLV w da. 

Choosing v = Thu and w = T*u* in the first one, and v = Tu and w =T** 
in the second one, we have 

e(Thu) = an(ThU, T*u*) - j ,L* (T*u*)Thudcd, 

(5.8) an(Tu, Th*u*) = j aL(Tu)T*u* du+JuThu* dx 

- |OLL(7TU)"Th*U dca + Qh (ThU, Th U*) 

by definition of Th. 
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We know that Thu = 0 on Fi; the first equality in (5.8) and the definition of 
T lead to 

e* ((T- Th)u) = a (Tu, T*u*) -*(Thu) 

= an((T - Th)u, T*u*) + | a,* (T*u*)Thudda 

= a,((T - Th)u, (T* -Th)U*) + jr a* (T*u*)Thuda 

+a.(Tu, Th*u*) -an(Thu, Th*u*) 
= a,((T - Th)u, (T* - Th*)u*) + a, (Tu, T*u*) 

+ j avL* (T* u)TThu + aVL(TU)Th*U ] da 

+ aA (Thu, Th* u*) according to (4.8). 

The proof of the second relation is complete after we note that 

OVL* (T*u*) = A(a)avT*u*, 

aVL(TU) = A(a)av Tu, 

since Tu= T*u* = 0 on aQ. [ 

5.3. Proof of Lemma 5.2. Proof of (1): we describe a0h with the notation 
defined in (3.8). Every point y of Ai can be written in a unique way as follows: 

y = x(a) +in (a) with X E (dh(a)), 0). 

Taylor's formula at the point x((a) gives 

au(y au (y uu*= (x(a)) (x(a)) + O(hk+l ) according to Corollary 3.1 

aOu Ou* 
= vIy -(x(c)) (x((a)) + O(hk+l ) because of u = 0 on Fi. Ov Ox())av 

We note that 

dxl dx2 = (1d-aR)) dd4 = (I + O(hk+l)) dad4, 

where R(a) is the radius of curvature of aQ at the point x(a). The second 
equality is a consequence of Corollary 3.1. This gives us 

~2 
O / au&u* 

a.(r, ) = k dh ( aiivtvi0 y +O (hk+ ' )) d - d a 

= 
r () au 

O 
(x(a))dh(a) dcr + 0(h 

which ends the proof of the first relation. 
Proof of (2): for the sake of simplicity, we let 

(5.9) V = Thu* and v *= T*u* on 
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The boundary of Q being regular, we can extend v and v* to R2 \ Q as 
Ck+l -functions. The bilinearity of a L gives us 

az6e (Vh , Vh*) = a,,, (v, v*) + a, (Vh - v, V*) + a., (v, v* - v*) 
(5.10) 

h 
+a(vh-v,Vh -V)h 

Analogously to the previous argument, we have 

(5.11) a,X (v, v *) = j k(a)dh(a) da + O(h2k+2) 

with g(a) = A(a) 0,v0, v* (x(a)), hence A2 g(a) = g(a), and we obtain the 
first term given in the equality we are trying to prove. We now show that the 
remaining terms in the equality (5.10) are bounded by h2k. We first use the 
continuity of a, : 

Ia,(v -Vh, v*) C? Cliv -Vh II1,2,Ae liV II1,2,A, 

( 5. 12) |a., (v, v* - v*)| C || v* -V* 111, 2,A, L1v111 VI, 2 ,AL 

|a,L (v -Vh, V* - V*) | C || V -Vh IIIl,2,AL 11 v -Vh 111l,2,L&, 

Let rhv be the Lagrangian interpolation polynomial of degree k of v. Ac- 
cording to Ciarlet and Raviart [8], we have 

(5.13) v-rhV II 1,2,Qh < C hk . 

According to (4.2), we then obtain 

(5.14) Vh - rhV 111,2,8 < Chk. 

Using the fact that Vh - rhv belongs to Vh and Lemma 3.3, we furthermore 
have 

(5.15) || Vh - rhv 1I1,2,Ae A Ch2 || Vh - rhV 111,2,8 

< Ch2 according to (5.14). 

We also have, by Ciarlet and Raviart [8], 

|| v-rhV ||,o,Unh <, C h 

It is then clear that we obtain 

(5.16) Ch4v - rhV 11 ,2,A < (area(,,))211 V - rhv III,,i 

Hence, we obtain 

(5.17) I v-Vh II1 ,2,AL < Ch2k. 

The same kind of estimate holds for v *-v* . We furthermore have the following 
inequality: 

h ic1, 2,a < C (areaf(v)) 2< C h -2 

which is also true for II v 1 I1 2,Ae C 
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Putting these two last results in (5.12), we have 

| aL(v-Vh, V*) I ? Ch2k+E, 

a (v, v*-v*) I v Ch2k+2 

a6(v -Vh, V* -Vh*) | Ch3k. 

Using these inequalities in the equality (5.10), we obtain the second relation of 
Lemma 5.2, thanks to (5.1 1). 

Proof of (3): the proof of (4) being similar, it will be omitted. We use the 
notations (5.9). The function Vh vanishes on 0Qh, hence, according to (3.8), 
we can write 

Vh(X(a)) = --dh(a) n(a) Vvh(y) with y E (x(a), Xh (a)) 

=-dh(a) n (a) VVh(X(a)) + dh(a) n(a)(Vvh(x(a))-VVh(Y)) 

--dh (a) OvVh (X (a)) + O(hk+1 | n (h) (VVh(X(a)) - VVh(Y)) ) 
according to the estimate on dh obtained in Corollary 3.1. 

We furthermore have 

n n(a)(VVh(X(a)) - VVh(Y)) I 
< I a(Vvh(X (a)) - Vv(x((a))) 

+ I -n(a) Vv(x(a)) - Vv(y)) 

+ I(a)VVh (Y) - Vv(y)) I 
c (C1 v -Vh II1,2,A + I X(a) Y-I) 

< Chk+l according to (5.17) and Corollary 3.1, 

which gives 
Vh (X(a)) = -dh(a)Ovvh (X (a)) + O(h2k+2). 

We finally obtain 
(5.18) 

I A(a)Ov(u*)Thuda = j A(a) Ov (u*)dh (a)Ovvh (x(a)) da + O(h2k+2). 

Since liv - VhIIl,2,8 = O(hk+1), we have 

OvVh (X (a)) = v (x (a)) + O(h k+). 

Furthermore, 

v Tu = 1U, 

I dh(a) = O(hk+l). 

Therefore, 

dh(a) OvVh (X (a)) = dh(a) Ovu(x (a)) + O(h2k+2). 

This, and (5.18), yield the proof of (3) and the lemma is completely proved. OI 
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6. PROOF OF PROPOSITION 2 

We use the Gauss-Lobatto formula to prove the proposition. Therefore, we 
introduce 00 = 0, 01, . O. , 6k = 1, the k + 1 Gauss-Lobatto quadrature points 
of [ 0, 1], and 

k 

(6.1) Gi(f) = Sj Aj f(ai + 6j 1i), 
j=O 

where the coefficients Ai are uniquely determined by 
1 

(6.2) Gi(p)= j (x)dx for all p E P2ki . 

We recall that Aj > 0 and _:k oAj = 1. 
According to the Peano theorem (see, for example, [9]), we have 

(6.3) For all f E C2k([a,, a,+i ]) EiE(f)I < Cli2k+f If2k, r, 

where 
01,+1 

(6.4) Ei(f J a-Gi 

We now begin the proof of Proposition 2. Denote yi = [c, ai+ ] and 
consider a Wkl-I, (0 Q)-function f . Then we have, for all a E Yi, 

j (a\ (- s)k2 d 
(6.5) ( (a) = pi(a) + | (k-1)(s) d 2)! , 

where pi is Taylor's polynomial of degree k - 2 of (P at the point ai. This 
equality implies that 

(6.6) 1 (P - pi llo, 0, y, C hk2 I (9 Ik- 1, 1, y, 

Furthermore, we can write: 
k 

j ((a) dh(a) da ((p - pi) (a) dh(a) da + E1(pi dh) + li E Aj (pi dh) (ai, j) 
j=0 

According to (6.4), (6.6), and Lemma 3.1, we deduce 

j f(0() dh (a) da 

C (h k 
I ( Ik-1l, I, y, + 1i h2 I Pi dh 12k, o, y, + 1i j maxk I (Pi dh) (ai, j) I) 

<1 C h 2k I (P Ik- 1 1, y,+ 1iI 11 (Plk-2, oo, y, (h 
2k 

dh 12k, oo, y,+j omax I dh (ai, j) 1)) 

where we have used the inequalities: 

max I Pi(aij) I Pi Io, ?, Y, <, C 11 ( Ilk-2, oo, y, 
j=O, ,k 

IPi dh 12k,oo,y, < C11 G Ilk-2,oo,y, 11 dh 112k,oo,y, 
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Carrying out the summation over all intervals yi, we obtain 

j (a) dh(a) dcr 

C (h 1k I Ik- 1, 1, O 

+ L || IIk-2,, aQ (max |dh (ai, j) I + h2k max 1l dh 1I 2k, o, 7i)) 

To complete the proof of Proposition 2, we need the following lemma. 

Lemma 6.1. There is a nonnegative constant C such that, for all i, we have 

{ dh 112k,?,yj A C, 

I dh( ci,j) I < C(j (x - Xh)(ci,j) I + h2k+l). 

Proof of Lemma 6.1. We construct two parametric representations of aQh: 

S E [ai, C i+l Xh(S) =FK ( I 
cr 

?) 

c E [cii, ci+l ]Ih(c) = x(c) + dh(ci) n7(ci) 

This defines a homeomorphism 

f:aE[O,L] --s= f(c)E[O,L] 

with 

(6.7) Xh(S) = -Xh(c) = x((a) + dh(ci) n (c), 

which gives us 

(6.8) dh(ci) = ((Xh(S) - x(ci)) 7 (ci)). 

We already observed that xh and all its derivatives are bounded independently 
of h and i; then we obtain the first inequality, provided f is C" on [ 0, L ] 
and has all its derivatives bounded independently of h and i. We first prove 
with a Taylor expansion that there is a constant C independent of i and h 
such that 

(6.9) a f- s I C hk+ 

According to (6.7) we have 
(6.10) 

Xh(s) - x(s) = x(i) - x(s) + dh(ci) n (c), 

= (s - a) t (a) + (2R(af) + dh (af) n f)+? s-a3, 

where R((a) is the radius of curvature of aQ at the point x((a). 
Lemma 3.1 and Corollary 3.1 say that we have jjx - xh IIo ,,an < Chk+l 

and dh((a) < Chk+ I, thus (6.10) leads to (6.9). 
We now study the regularity of f . According to (6.7) we have 

(6.11) f(ci) = liF 1 (x(()+adh(ci)n(a)) + cil 
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We assume the triangulation to be k-regular; this implies that FK is a Ck - 
diffeomorphism; furthermore, it belongs to (Pk)2. It is then clearly a C? - 

diffeomorphism. Since dh is regular and using (6.11), we obtain that f is 
regular. 

In order to prove that all derivatives of f are bounded independently of h 
on [0, L], we multiply (5.7) by x'(a) = t (a), and we have 

(6.12) q(a) = (x(a) .x'(a)) = (Xh(s). X'(a)), 

where 0 is a C?? -function on [ 0, L ] which does not depend on h. Carrying 
out the differentiation with respect to a, we obtain 

(6.13) 0'(a) = f'(a) (Xh(S) .x '(a)) + (Xh(S) x "(a)). 
According to (6.9), we can write 

(Xh(s) * x' (a)) = (xa(a) * X' (a)) + (X'(a) X'(s) - X'(a)) + (X'(a) X(s) - X'(S)) 
-1 + O(h k), 

because of lix' - xh IIO,o,I,9 = O(hk) as a consequence of Lemma 3.1. We 
deduce from these calculations that, if h is small enough, 

(xh(s) X' (a)) #0 , 

thus f' is independent of h since xh and all its derivatives also are. We 
then obtain that all derivatives of f are bounded independently of h thanks 
to the previous remark and with the help of an induction by carrying out the 
differentiation of the equation (6.13) with respect to a. Thus, all the derivatives 
of f are bounded independently of h on [ 0, L ] and inequality (6.8) proves 
the first part of the lemma. We now proceed to the second part. 

Define 

(6.14) Si,j = (ij), 

and write (5.8) at the points si, j and ai,1: 
(6.15) 

dh (ai,) = ((Xh(Si j) -x(,a)) * n (ai, )) 

= ((Xh(ai, j) - x(ai, j)) * (ai, j)) + ((Xh(Si, j) -Xh(ai, j)) (i, j)) 

+ ((x(a, j) - x(si, j)) * n (ai, A 

We know that 

Xh(Si, j) - Xh(ai, ) = (Si, j- a1, j)x((ai, j) + O(h2k+2) 
according to the estimate of s - a stated in (6.9) 

= (Si, j- aj, j)x' (ai, ) + O(h 2k+2) 

+ (si, j- ai, j) (Xh (a1i, j) - 

= (si, - ai,j)x'(ai,j) + O(h2k+l) since i x - Xh | - O(hk). 

Substituting the last equality into (6.15), we obtain 

dh(ai,j) = ((Xh(ai, ) - x(ai,})) n (ai,j)) + O(h 

because of x'(ai, j) = t (ai, )) * 
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Remark. According to (6.15), we could change (H2 ) and (H) to (H3): 

(o~,~)) I 2k 
(H3) { I ((Xh(ai,j) - x(ai,)) . n (ai, | h 

I Xh(ai, j) -X(ai j) 
C 

lik+ 

7. EXAMPLES 

We use again the notations of ?3. We consider a triangle K of the triangula- 
tion Xh with a curved edge Fh in 0Qh and denote by A and B the vertices 
of Fh. We call F the part of OQ lying between these two points. Let 0 be 
the midpoint of A and B. 

For k = 2, we give two different constructions of the arc Fh; for k = 3, we 
only give a sketch, since it is the same idea. 

7.1. The case k = 2. The Gauss-Lobatto quadrature points of the segment 
[0, 1], for k = 2, are 0, 1/2, 1. We assume that A and B have -1/2 and 
1/2 as arclength. Let 

(7.1) C' = x(0). 

If we define Fh by the three points A, B, and C', then the hypothesis (H) 
clearly holds, and the triangle K is k-regular, but C' is difficult to calculate if 
F is not parametrized by its arclength. 

We can also consider the point C intersection of F and the median of 
[A, B]. Let us show why this point is convenient. We must have 

(7.2) CC'= 0(h4). 

Let 

~~'_dx(ar) 
(7.3) t (a) = d 

C = x(af) 

Lemma 7.1. With the previous notations, we have 
(1) 0 = 0(h4), 

(2) CC'= 0(h4). 

Proof. The point a, is defined by OC *AB = 0. 
We write the expansion of the function x at the point 0 for a = a,, -1/2, 

or 1/2, 

x(a) = x(0) + aX'(0) + 0)1+ 

hence 

OC=X(ai)- x (- +x ( 

= aix'(0) + ja~12 1 12)X//(0) + 3a?1 x"(0) + 0(14), 

AB= x( ) - x(- ) = / (x'(0) + x"'(O) + 0(14)). 
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FIGURE 7. 1 

Thus, 

1 3 + 1 f2 (x'(0) X"'(0)) + 0(14) = 0. 

We deduce that a1 = 0(14). We have already remarked that / = O(h), thus 
we have shown the first relation of the lemma. 

We also have 

CC'= x(al) - x(O) = a1 t (0) + O(h8), 

which shows the second relation. E] 

The point C satisfies the hypothesis (H); it also satisfies the hypotheses 
needed for a k-regular triangulation ([7]). We remark that any point C" with 

C'C"= 0(h4) is also convenient; we then show another way of constructing the 
third point required to obtain Fh . 

Let D and E be the two exterior nodes of the triangulation which are re- 
spectively the nearest of A and B. 

We consider p a polynomial of degree three, passing through A, B, D, and 
E, and we denote by C" the intersection of p with the median of [A, B]; 

by construction, C" satisfies that C'C"= 0(h4) and C" is easy to calculate. 
We give an algorithm to obtain C". We first work with the orthonormal 

frame of reference defined by Figure 7.1, and we denote by (xM , YM ) the 
coordinates of a point M in this frame of reference. We have 

XA = -XB I 

{YA =YB = 0, 

Yc = 0. 

We define two polynomials P D and P E as follows: 

(X-XE)(X-XA)(X -XB) 
PD (X) (XD -XE) (XD -XA) (XD - XB) 

(7.5) 
_( (X XD)(X -XA)(X - XB) 

PE(X) - (XE -XD) (XE -XA) (XE - XB) 
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We then define C" by 

(7.6) XC = YDPD (O) +YEPE (O) 

We now work in the original frame of reference, assumed to be orthonormal, 
and denote by (x/ , YM ) the coordinates of a point M in this frame of 
reference; we can then give an algorithm to calculate C": 

(1) Change of frame of reference: 

a XO-XA YO YA a h/2 'h/2__ 

f(x, y) 8 (x - xO) + a(y - y') 

g(x, y) =a(x - xO) - 8(y - y') 

XE = g(XIy')J g( 

YE f(XE, YE) YD f(XD YD) 

(2) Equality (7.6): 
h2___ xz yt1 

{ px, , , t =4(x y) x2 _h2/4 y2h2/4J' 

C = P(XD, XE, YD YE). 

(3) Result: 
{x4i = c + xo, 

l Y = ac +yl. 

Remark. In the case of k = 2, according to Ciarlet and Raviart [7], the trian- 

gulation is k-regular if we have 11 OC" 0= (h2), which is the case; we then 
construct the other two edges to obtain the other hypotheses of k-regularity. 
7.2. The case k = 3. The Gauss-Lobatto quadrature points of the interval 
[0, 1 ] in the case k = 3 are 0, a = '(1 - I), ,B= (1 + I), 1. Let 

B =X(a), 
C =X(f8). 

We then observe that all points B' and C' satisfying 

BB'II 0 0(h6), 

II CC' 0I = 0(h6) 

are convenient to construct Fh . We consider a polynomial p of degree five pass- 
ing through six exterior and nearest nodes of the triangulation and we denote by 
B' (respectively C' ) the intersection of p with the orthogonal straight line to 
(A, B) passing through the point aA + (1 - a)B (respectively 8.A + (1 - ,8)B). 

These points define a convenient arc Fh; we then construct the two other 
edges of the triangle in order to have a 3-regular triangulation. 
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